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’ INTRODUCTION

Being born small for gestational age (SGA) affects 3�10% of
nulliparous pregnancies and confers significantly increased risks
of perinatal morbidity and mortality. SGA is associated with at
least 25% of all stillbirths,1 and recent evidence suggests this
figure is possibly as high as 50%.2 There is an increased risk of
learning difficulties and cerebral palsy in survivors,3,4 and recent
studies have suggested that SGA affects both the long-term
development and homeostasis of the endocrine system in later

life, inducing complications such as hypertension, coronary heart
disease, hypercholesterolemia, and diabetes.5�8

SGA is most commonly defined as less than the 10th centile of
birthweight by a specific gestational age.9 More recently custo-
mized birthweight centiles (correcting for maternal height,
maternal weight at booking, ethnic origin, parity, sex of fetus,
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ABSTRACT: Being born small for gestational age (SGA) confers
increased risks of perinatal morbidity and mortality and increases the
risk of cardiovascular complications and diabetes in later life. Accumu-
lating evidence suggests that the etiology of SGA is usually associated
with poor placental vascular development in early pregnancy. We
examined metabolomic profiles using ultra performance liquid
chromatography�mass spectrometry (UPLC�MS) in three indepen-
dent studies: (a) venous cord plasma from normal and SGA babies,
(b) plasma from a rat model of placental insufficiency and controls, and
(c) early pregnancy peripheral plasma samples from women who sub-
sequently delivered a SGA baby and controls. Multivariate analysis by
cross-validated Partial Least Squares Discriminant Analysis (PLS-DA)
of all 3 studies showed a comprehensive and similar disruption of
plasma metabolism. A multivariate predictive model combining 19 metabolites produced by a Genetic Algorithm-based search
program gave an Odds Ratio for developing SGA of 44, with an area under the Receiver Operator Characteristic curve of 0.9.
Sphingolipids, phospholipids, carnitines, and fatty acids were among this panel of metabolites. The finding of a consistent
discriminatory metabolite signature in early pregnancy plasma preceding the onset of SGA offers insight into disease pathogenesis
and offers the promise of a robust presymptomatic screening test.
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and gestational age) have been proposed as a more effective way
of identifying SGA pregnancies associated with morbidity and
mortality.10,11 However, even when defined using customized
centiles, it is estimated that one-third of all fetuses below the 10th
customized birthweight centile are constitutionally small and are
thus misdiagnosed as being at high-risk of adverse outcome.11

Because accurate diagnosis in the vast majority of cases may only
be made with certainty after delivery, a significant number of
fetuses that are healthy but SGA may be subjected to high-risk
protocols and, potentially, iatrogenic prematurity. The clinician’s
challenge is not only to identify SGA fetuses whose health is
endangered in utero and to monitor and intervene appropriately
but also to identify constitutionally small but healthy fetuses and
avoid iatrogenic harm to them or their mothers.

Presently, there is no accurate way of antenatally identifying
nulliparous women who will subsequently deliver an SGA baby.
Thus, the condition remains undiagnosed before birth in
40�80% of cases, contributing to the high rate of stillbirth.12�14

Several biomarkers for SGA have been proposed, including growth
factors,15,16 placental hormones,17�19 and angiogenic factors;20�22

however, none (nor any combination) have shown satisfactory
specificity and sensitivity to be clinically useful.

The majority of SGA infants at risk of adverse outcome are
thought to be pathologically small secondary to fetal growth
restriction (FGR); defined as a condition where a fetus is unable
to achieve its genetically determined potential size.23 In spite of
the many known risk factors associated with SGA,24 the under-
lying disease pathology of FGR is complex and not well under-
stood. Accumulating evidence suggests that disease manifesta-
tion is due to poor placental vascular development in early
pregnancy such that the fetus does not receive sufficient nutrients
and oxygen needed for optimal growth and development through-
out pregnancy.25�28 It has been postulated that trophoblast
dysregulation at a subcellular level and loss of functional mass
of villous trophoblast via cell death pathways are key contributors
to the suboptimal placental perfusion that yields growth restric-
tion.29 In support of this, placentae from women who deliver
SGA infants may have macroscopic evidence of infarction and
microscopic changes including increased formation of syncytial
knots, reduced cytotrophoblast proliferation, and increased
apoptosis when compared with placentae from pregnancies
resulting in normal birthweight infants.30,31

We therefore hypothesized that poor placental perfusion will
result in altered levels of biochemical factors in bothmaternal and
fetal blood throughout pregnancy when compared to normal
healthy pregnancy, reflecting the poor transfer of nutrients and
oxygen to and waste products from the fetus. As trophoblast
differentiation and invasion begin in early pregnancy, we also
hypothesized that subsequent suboptimal placental perfu-
sion will also commence early in pregnancy. Detecting a bio-
chemical phenotypic signature early in pregnancy, prior to
clinical diagnosis, could yield an effective presymptomatic
screening tool for SGA.

Metabolic profiling32�41 is a powerful systems biology strategy
for investigating the lowmolecularweight biochemicals (metabolites)
present in the metabolome of a cell, tissue, or organism.42�48 Its
position as the final downstream product of gene expression enables
the provision of a high resolution multifactorial phenotypic signa-
ture of disease etiology, manifestation, or pathophysiology.49�56

Metabolomic technology can be used to analyze many differ-
ent types of biofluid. Human blood is a complex sample type that
generates thousands of metabolites57 and reflects themetabolism

of multiple tissue and cell types in the mammalian body. We have
demonstrated that this technology produces reproducible,
robust, and valid results in metabolic profiling studies when
using blood as an analyte.58,59 We and others have previously
reported results of a metabolomic screen on plasma fromwomen
with established pre-eclampsia.49,60�62 We therefore sought to
take a similar metabolomic approach for characterizing the
metabolic phenotype of SGA in plasma.

The investigation presented here consisted of three consecu-
tive but independent studies. First, the aim was to characterize
the metabolic signature of SGA at a time-point as close as
possible to that of clinical diagnosis such that a biochemical
time-of-disease signature could be defined. This was achieved
by analyzing plasma from the umbilical cord that drains the
placental vasculature taken immediately after delivery. By sampl-
ing venous umbilical cord plasma, rather than maternal plasma,
we were also able to determine a biochemical signature solely
associated with fetal-placental interaction and not obscured by
the metabolome by particular characteristics of the maternal
circulatory system and its interaction with other organ systems.

Second, the time-of-disease metabolite biomarker signature
was compared to the metabolic profile of an animal model of
placental insufficiency, the reduced uterine perfusion pressure
(RUPP) rat, where the phenotype of the pups and placentas at
birth is comparable to severe growth restriction.63,64 Several
animal models of abnormal fetal growth exist;65,66 however, most
involve either stressing the animal (e.g., hypoxia) or imposing
strict dietary regimes. The changes in metabolism due to
genotype, diet and/or environment are difficult to differentiate
from potential biomarkers due to placental insufficiency. The
RUPP model, which involves a mechanical intervention to
restrict blood flow to the placenta, removes these concerns as
any resulting changes in metabolism is more likely to reflect
placental etiology. By comparing the cord plasma metabolome to
that of the RUPP model, we were able to assess to what degree
the cord plasma biomarker signature reflected the phenotype of a
highly constrained model of placental insufficiency.

Third, the cord plasma biomarker signature was compared to
that from peripheral blood samples collected at 15 ( 1 weeks’
gestation from women who subsequently delivered a SGA baby
and matched controls. A nested case-control experiment was
performed using a subset of women who were participants in the
multinational Screening for Pregnancy End Points (SCOPE)
study (www.scopestudy.net), a prospective cohort study of
healthy nulliparous women.

Finally, comparable metabolite data from both the venous
cord blood study and the week-15 study were mined to find a
simple yet robust, metabolite rule that effectively predicts SGA in
early pregnancy. The components of this simple metabolite
signature were compared across all three studies.

’MATERIALS AND METHODS

Participants and Specimens

(a). Venous Cord Plasma. Venous cord blood was obtained,
within 20 min of delivery with written maternal consent in
compliance with the Central Manchester Research Ethics Com-
mittee approval. Blood was collected from women with uncom-
plicated, term pregnancies resulting in delivery of a healthy
singleton fetus (n = 6) and from women with suspected SGA,
which was subsequently confirmed after delivery based on indivi-
dualized birthweight centiles (n = 8)10 (www.gestation.net).
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Pregnancies complicated by any other maternal or fetal factor,
including pre-eclampsia, gestational hypertension, diabetes
mellitus, and congenital anomalies were excluded. No dietary
constraints were imposed on the participating women.
Plasma samples were collected into BD EDTA-Vacutainer

tubes, placed on ice and centrifuged at 2400� g at 4 �C for 10min
according to a standardized protocol. Plasma was stored in
aliquots at �80 �C. The collection and storage conditions were
identical for cases and controls.

(b). RUPPModel. Pregnant Sprague�Dawley rats (12 weeks;
supplied and maintained by the Biological Services Unit,
University College Cork) were housed in the Biological Services
Unit at University College Cork. Animals were maintained at a
temperature of 21 ( 2 �C, with a 12-h light/dark cycle and with
free access to food and tap water. All procedures were performed
in accordance with national guidelines and the European Com-
munity Directive 86/609/EC and approved by the University
College Cork Local Animal Experimentation Ethics Committee.
On day 14 of a 21 day pregnancy, animals destined for the

RUPP experimental group were anesthetized with isoflurane
(2�5% inhalation), and the abdominal cavity was opened via a
midline incision to expose the lower abdominal aorta. A silver clip
(0.203 mm ID) was placed around the aorta (above the iliac
bifurcation) to reduce uterine perfusion pressure by approxi-
mately 40%.67 Because compensation of blood flow to the
placenta occurs via an adaptive response of the uterine arteries,68

silver clips (0.10 mm ID) were also placed on the main uterine
branches of both right and left uterine arteries. A series of experi-
ments was also carried out in sham-operated animals (i.e., subjected
to the same surgical procedure with the exception that the vessels
were not partially occluded). On day 19 of pregnancy, all animals
were anesthetized with isoflurane and blood was collected via the
abdominal aorta into precooled heparinised vacutainers. All pups
and placentas were removed, weighed, and litter size noted. Any
animals in which the clipping procedure had resulted in total
reabsorption of fetuses were excluded from the study. Blood
collected into precooled heparinised vacutainers was centrifuged
at 2400� g for 10 min at 4 �C; the plasma was then removed and
stored in 250 μL aliquots at �80 �C. Plasma for a total of 23
animals was collected for metabolomic analysis: 7 normal
pregnant, 8 sham operated, and 8 RUPP.

(c). Week-15 Peripheral Plasma. All women were partici-
pants in the multinational SCOPE study. These samples are
extremely well curated, accompanied by comprehensive meta-
data, and are proportionally population matched to avoid
potential sources of bias.69 The SCOPE study is a prospective,
cohort study with the main aim of developing accurate screening
methods for later pregnancy complications, including SGA
(ACTRN12607000551493). Full ethical approval has been
obtained, and all patients gave written informed consent. Healthy
nulliparous women with a singleton pregnancy were recruited
between 14 and 16 weeks’ gestation and tracked throughout
pregnancy. No dietary constraints were imposed on the partici-
pating women throughout this study.
We performed a case control study within the initial 596

recruits from Adelaide, Australia, of whom pregnancy outcome
was known in 595 (99.8%). Seventy-three (12.2%) women went
on to deliver SGA babies and 267 (44.8%) had uncomplicated
pregnancies. The remainder had other pregnancy complications.
Forty women who developed SGA were matched for age, ethnicity,
and BMI to 40 controls who had uncomplicated pregnancies.

Women with coexistent pre-eclampsia were excluded from
the study.
Venipuncture was performed at 15 ( 1 weeks’ gestation, and

plasma samples were collected into BD EDTA-Vacutainer tubes,
placed on ice, and centrifuged at 2400� g at 4 �C according to a
standardized protocol. Plasma was stored in aliquots at�80 �C.
The collection and storage conditions were identical for cases
and controls, with the time between collection and storage being
2.07 (SD 0.90) and 2.02 (SD 0.96) hours, respectively, P = 0.78.

Reagents, Sample Preparation, and Mass Spectral Analysis
All chemicals and reagents used were of Analytical Reagent or

HPLC grade and purchased from Sigma-Aldrich (Poole, UK) or
ThermoFisher Scientific (Loughborough, U.K.). Plasma samples
were allowed to thawon ice for 3 h, vortexmixed to provide a homo-
geneous sample and deproteinised. To 100 μL of plasma was added
300μLofmethanol (HPLCgrade) followed by vortexmixing (15 s,
full speed) and centrifugation (15 min, 11 337� g). Two-hundred
seventy microliter aliquots of the supernatant were transferred to a
2 mL tube and lyophilized (HETO VR MAXI vacuum centrifuge
attached to a Thermo Svart RVT 4104 refrigerated vapor trap;
Thermo Life Sciences, Basingstoke, U.K.). Quality Control (QC)
samples were obtained by pooling 50 μL aliquots from each plasma
sample prepared. This was defined as the pooled QC sample and
100 μL aliquots were deproteinised as described above.

Deproteinised samples were prepared for UPLC-MS analysis
by reconstitution in 90 μL HPLC grade water followed by vortex
mixing (15 s), centrifugation (11 337� g, 15 min) and transfer to
vials. Samples were analyzed by an Acquity UPLC (Waters Corp.
Milford, MA) coupled to a hybrid LTQ-Orbitrap mass spectro-
metry system (Thermo Fisher Scientific, Bremen,Germany) operat-
ing in electrospray ionization mode as previously described.59,70

Samples were analyzed in batches of up to 120 samples, with an
instrument maintenance step at the end of each batch involving
mass spectrometer ion source and liquid chromatography col-
umn cleaning. For each analytical batch, a number of pooled QC
sampleswere included toprovide quality assurance.Thefirst 10 injec-
tions were pooledQC samples (to equilibrate the analytical system)
and then every fifth injection was a pooled QC sample. For each of
the analytical experiments (venous cord plasma/RUPP/week-15),
sample preparation order was randomized from sample picking
and rerandomized before sample analysis to ensure no systematic
biases (e.g., analysis order correlateswith sample preparation order).
The samples were also blinded to the analytical scientists to avoid
any subjective bias. Each study was performed several months
apart, such that all the studies could be considered independent
both in terms of sample source and chemical analysis. Raw profile
data were deconvolved into a peak table using XCMS software.71

Data were then subjected to strict Quality Assurance procedures
so that statistical analysis was only performed on reproducible
data. Full details of all methods pertaining to sample preparation,
UPLC�MS analysis, and quality assurance are described in the
attached supplementary methodology file (Supporting Information).

For the venous cord bloods study alone, three replicate plasma
samples were analyzed per subject. These replicate samples were
collected at the same sampling time-point, but subsequently
included in the randomization of sample picking, preparation and
injection order protocols. This oversampling design was imple-
mented to allow validation of the overall analytical procedure,
such that the within patient variability could be compared to the
between class discrimination in subsequent statistical analysis. In
this way the Quality Assurance procedure was also validated.
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Statistical Analysis
Comparisons of clinical data between cases and controls were

performed using the Student’s t test, Mann�Whitney test, Chi
square test or Fisher’s Exact test, as appropriate (SAS system 9.1).

For each metabolite peak reproducibly detected in a given
study, the null hypothesis that the means of the case and control
sample populations were equal was tested using either the
Mann�Whitney test or Student’s t test, depending on data
normality (assessed using the Lilliefors test). The critical p-value
for significance was set to 0.05. Avoiding false positives by
correcting for multiple comparisons was performed using False
Discovery Rate (FDR)72 analysis and FDRs are quoted where
appropriate. Comparisons across experiments were not cor-
rected as this process of validation is deemed sufficient to remove
any false positives. In addition, a Receiver�Operator Character-
istic (ROC) curve was calculated to assess each peak’s effective-
ness as a univariate discriminatory biomarker. The area under the
ROC curve (AUC) provides a good estimate of biomarker utility
(an AUC= 1 demonstrates perfect biomarker separation; AUC=
0.5 demonstrates no utility at all).

Multivariate profile-wide predictive models were constructed
using Partial Least Squares Discriminant Analysis (PLS-DA).73�75

For each model, all of the reproducible peaks for a given study
were included, unless expressly stated. The number of latent
variables in each model was selected using stratified 5-fold cross
validation,73 and associated R2 and Q2 statistics calculated. Here,
R2, the squared correlation coefficient between the dependent
variable and the PLS-DA prediction, measures “goodness-of-fit”
(a value between zero and one, where one is a perfect correlation).
Q2 provides a measure of “goodness-of-prediction” and is the
averaged correlation coefficient between the dependent variable
and the PLS-DA predictions for the 5-hold out data sets
generated during the cross-validation process.

Further validation was performed to check the robustness of the
final PLS-DAmodel by comparing it isQ2 value to a reference distri-
bution of all possible models using permutation testing (N = 1000)
following the standard protocol for metabolomic studies.76 Here
a reference Q2 distribution is obtained by calculating all possible
PLS-DAmodels under random reassignment of the case/control
labels for eachmeasuredmetabolic profile. If the correctly labeled
model’s Q2 value is close to the center of the reference distribu-
tion then the model performs no better than a randomly assigned
model and is therefore invalid. For all PLS-DA models described
here the associated reference distribution plots are provided,
from which an estimate of the probability of the candidate model
randomly occurring can be estimated. In addition, where appro-
priate, a receiver operating characteristic (ROC) curve was
determined so that an accurate assessment of discriminatory
ability could be made.

Finally, we searched for an “optimal” multivariate discrimina-
tory model drawn from the named metabolites observed in both
the venous cord plasma and week-15 studies. A Genetic Algo-
rithm-based search program was used to obtain the subset of
metabolites which produced an effective predictive rule for the
onset of SGA. This search method has been shown to be very
successful in previous studies.33,77�81 In this algorithm, a set of
candidate solutions evolve over time toward an optimal state.
The evolution is pushed by computational techniques inspired
by evolutionary biology. In our algorithm, each candidate solu-
tion (subset of metabolites) is assessed by building two inde-
pendent Linear Discriminant Analysis models, one modeling the
venous cord plasma data, and the other modeling the week-15

data. A candidate’s fitness is proportional to the sum of the root-
mean-square error of prediction (RMSEP) of these two models.
Once the optimal subset of metabolites was found, its predictive
ability was assessed using PLS-DA. Assessment was performed
independently for the venous cord plasma and week-15 data. In
addition the final “rule”was tested using the RUPPmodel data to see
if there was a consistent minimal signature across all three studies.

All peak data were Pareto scaled before multivariate analysis.82

All statistical analyses were carried out using the Matlab scripting
language (http://www.mathworks.com/). All univariate algo-
rithms were implemented such that any missing values are
ignored. All multivariate algorithms were implemented such that
missing values were imputed using the nearest-neighbor method.83

Where appropriate, for the PLS-DA prediction scores, the
optimal unbiased discriminatory decision boundary was esti-
mated using the optimal Youden’s index method84 and then the
associated discriminatory odds ratios with 95% confidence
intervals (OR 95%CI) calculated.84,85

Metabolite Identification
For identification of UPLC�MS peaks, the accurate mass for

each peak was searched against The Manchester Metabolomics
Database71 constructed with information from metabolic recon-
structions,86 both HMDB (http://www.hmdb.ca/) and Lipid-
maps (http://www.lipidmaps.org/). The workflows applied are
freely available.87 Ametabolite name(s) was reported when amatch
with a mass difference between observed and theoretical mass was
less than 3 ppm. Using UPLC�MS, metabolites are often detected
multiple times due to chemical adduction, dimerization, multiple-
charging, isotope peaks and fragmentation. After removal of
duplicate identifications, a list of unique metabolites was com-
piled. Definitive identifications were reported only for metabo-
lites with retention time errors <10 s and an accurate mass match
<5 ppm. Once identified, the metabolites were grouped into
metabolite classes using the HMDB “Class” hierarchy (http://
www.hmdb.ca/).

’RESULTS

Venous Cord Plasma
Maternal characteristics and pregnancy outcomes of the cases

and controls are described in Table 1. Age, BMI, parity, smoking
and baby sex were carefully matched across cases and controls.
All SGA babies had an individualized birthweight centile <10th
centile.

Ultra performance liquid chromatography�mass spectrome-
try (UPLC�MS) analysis reproducibly detected a total of 2011
metabolite features. A cross-validated Partial Least Squares
Discriminant Analysis (PLS-DA) model was built using two
latent factors. The resulting scores plot (Figure 1) demonstrated
clear differences between the SGA and control profiles with an
R2 = 0.88, Q2 = 0.81. Permutation testing showed that the
probability of a model of this quality randomly occurring was less
than 0.001 (Supplementary Figure S1, Supporting Information).
Figure 1 clearly shows that the analytical replicates (numbered)
produce highly repeatable PLS scores.

Univariate hypothesis testing was performed across the 2011
detected metabolites. Prior to statistical analysis, the three
analytical replicates were averaged, to avoid biased reduction of
the significance values. With a critical p-value of 0.05, 744 meta-
bolite features (37% of those detected) were found to have
significant difference between SGA and control, with a false
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discovery rate (FDR) of 6%, of which 96 were putatively
identified as “unique” endogenous metabolites.

RUPP Model
RUPP pups were associated with restricted fetal growth, with

respect to pup weight, when compared with normal pregnant
(2.2 ( 0.1 versus 3.2 ( 0.1 g; P < 0.001) and sham-operated
(2.2( 0.1 versus 3.2( 0.1 g; P < 0.001) pups (data not shown).
Furthermore, placental weights from RUPP rats were also
significantly reduced compared with both normal pregnant

(0.33( 0.01 versus 0.43( 0.01 g; P < 0.001) and sham operated
(0.33 ( 0.01 versus 0.42 ( 0.02 g; P < 0.001) rats (data not
shown).63

UPLC�MS analysis reproducibly detected a total of 2008
metabolite features. A cross-validated PLS-DA model was built
using 2 latent factors. The resulting scores plot (Figure 2)
demonstrated clear differentiation between the RUPP and
normal pregnancy profiles with an R2 = 0.69 and Q2 = 0.63.
Permutation testing showed that the probability of a model of
this quality randomly occurring was less than 0.01 (Supplementary
Figure S2, Supporting Information).

Univariate hypothesis testing was performed across the 2008
detected metabolite features. With a critical p-value of 0.05, 602
metabolite features were found to have significant difference
between RUPP vs normal pregnant/Sham (FDR of 9%), of
which, 45 were putatively identified as “unique” endogenous
metabolites.

Comparison of Venous Cord Plasma Biomarkers with RUPP
Biomarkers

895 metabolite features were consistently detected in both the
venous cord plasma and RUPP experiments. Figure 3 compares
the significance values for these common metabolites between
the cord plasma study (SGA vs Control) and RUPP plasma study
(normal pregnant vs RUPP). Each point in the biplot represents
one of the observed common metabolites. Each point’s coordi-
nate location (x,y), is defined by the significance of the difference
in mean metabolite concentration for the given case/control
hypothesis test (x = venous cord plasma; y = RUPP) combined
with the mean direction of the difference in metabolite concen-
tration (+ve = case > control; �ve = case < control). One-
hundred ninety-three metabolite features were significantly
different in both studies (22% of the total detected). Ninety-six
percent of these metabolite features showed an increase in
metabolite level for the cases, with respect to control, in the
RUPPmodel and a decrease for the cases, with respect to control,

Figure 1. Cross-validated PLS-DA model of all the venous cord plasma metabolite features detected was built using two latent factors. The resulting
scores plot presented as a scatter plot and box and whisker plot demonstrated clear differences between the SGA and control profiles with an R2 = 0.88,
Q2 = 0.81, and an AUCof 1. TheQC samples were not used in themodel construction. These samples were simply projected through themodel posthoc.
The relative lack of dispersion of the projected QC samples provided robust quality assurance of the model’s precision. Permutation testing showed that
the probability of a model of this quality randomly occurring was less than 0.001 (Supplementary Figure S1, Supporting Information). Replicate
measurements taken from the same women are numerically labeled.

Table 1. Maternal Characteristics and Pregnancy Outcomes
of the SGA and Control Babies from Which the Venous Cord
Plasma Samples Were Taken

maternal characteristics control n = 6 SGA n = 8 p-value

Age (years) 24.5 (20.8�31.2) 30 (26.3�32.5) 0.33

Nulliparous 4 5 1.00

BMI kg/m2 25.0 (22.0�27.1) 24.8 (21.8�25.5) 0.82

Current smoker 1 2 1.00

Sex (male) 4 4 0.63

Mode of Delivery

- vaginal 4 2 0.28

- C/S 2 6

Gestation at

delivery (weeks)

38.5 (38.2�38.7) 39.0 (38.2�40.0) 0.15

Ethnicity

- caucasian 4 3 0.59

- other 2 5

Birthweight (g) 3040 (2945�3240) 2735 (2419�2813) 0.05

Customized

birthweight centile

29 (19�58) 3 (2�5) 0.04

Values are median (interquartile range) or number. BMI =
body mass index; C/S = caesarean section.

http://pubs.acs.org/action/showImage?doi=10.1021/pr2002897&iName=master.img-001.jpg&w=300&h=203
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in the cordplasma. SupplementaryTable S1 (Supporting Information)
lists the putatively identified metabolites that were significantly
different in both studies.

Comparison of Venous Cord Plasma Biomarkers withWeek-
15 Peripheral Biomarkers

Maternal characteristics and pregnancy outcome of the
women who subsequently delivered an SGA baby, and controls,
for the week-15 peripheral plasma study are shown in Table 2.
UPLC�MS analysis reproducibly detected a total of 2841
metabolite features. Seven-hundred eighty-five metabolite fea-
tures were consistently detected in both the venous cord plasma
and week-15 experiments. Figure 4 compares the univariate
significance values for these common metabolite features with
respect to the venous cord plasma study (SGA vs Control) and
week-15 study (SGA vs Control).

Of the 744 metabolite features that were significant on
univariate testing in the venous cord plasma experiment, 516
were also reproducibly detected in maternal peripheral plasma at
15 weeks’ gestation. A cross-validated PLS-DA model (3 latent
variables) constructed for the week-15 data, using only those 516
candidate SGA biomarkers, produced a Q2 = 0.48, R2 = 0.43,
AUCof 0.94 and an optimal discriminatory odds ratio of 49 (95%
CI 13�184) (Supplementary Figure S3a, Supporting In-
formation). Permutation testing showed that the probability of
a model of this quality randomly occurring was less than 0.02
(Supplementary Figure S3b, Supporting Information).

Twenty-nine metabolite features were significantly different in
both studies (p < 0.05), of which 6 were putatively identified as
“unique” endogenous metabolites (after removing the multiple
matches for chemical adducts and isotope peaks). These are
listed in Table 3.

Week-15 Peripheral Biomarker Signature
To find a simple, yet robust, predictive algorithm for SGA

diagnosis, the data from both the venous cord plasma and week-
15 studies were mined using a Genetic Algorithm-based search

Figure 2. Cross-validated PLS-DAmodel of all the RUPP plasma metabolite features detected was built using 2 latent factors. The resulting scores plot
presented as a scatter plot and box and whisker plot demonstrated clear differentiation between the RUPP and normal pregnancy profiles with an R2 =
0.69, Q2 = 0.63, and an AUC of 0.995. The QC samples were not used in the model construction. These samples were simply projected through the
model posthoc. The relative lack of dispersion of the projected QC samples provided robust quality assurance of the model’s precision. Permutation
testing showed that the probability of a model of this quality randomly occurring was less than 0.01 (Supplementary Figure S2, Supporting Information).

Figure 3. Eight-hundred ninety-five metabolite features were consistently
detected in both the cordplasma andRUPPexperiments. This biplot compares
the significance values for these commonmetabolite featureswith respect to the
cord plasma study (SGA vs Control) and RUPP study (Normal vs RUPP).
Each point in the biplot represents one of the observed common metabolite
features. A circle indicates a metabolite that significantly changes in both the
venous cord plasma and RUPP significance tests. The triangles indicate
metabolites that are significantly changed inRUPPbutnot significantly changed
in venous cordplasma, and the squares indicatemetabolites that are significantly
changed in venous cord plasma but not significantly changed in RUPP. The
crosses indicate no significant change in either the SGA or control samples.
Points lying in zone A show a mean increase in metabolite level for RUPP
samples and a mean decrease in venous cord plasma samples; zone B show a
mean increase in metabolite level for both venous cord plasma and RUPP
samples; zoneC show a decrease inmeanmetabolite level for both venous cord
plasmaandRUPPsamples;zoneD showadecrease inmeanmetabolite level for
RUPP samples and an increase for venous cord plasma samples.

http://pubs.acs.org/action/showImage?doi=10.1021/pr2002897&iName=master.img-002.jpg&w=316&h=199
http://pubs.acs.org/action/showImage?doi=10.1021/pr2002897&iName=master.img-003.jpg&w=240&h=219
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algorithm to find the subset of named metabolites that produced
the most robust predictive general model. The Genetic Algorithm
chose 19 metabolites (Table 4). Figure 5(a and b) shows the
PLS-DA model predictions using these metabolites for both the
week-15 study and the venous cord plasma study. For the week-15
data, the 19 metabolite model had an R2 = 0.61, Q2 = 0.56, an
AUC of 0.90 and an optimal odds ratio of 44 (95% CI 9� 214).
For the venous cord plasma data the 19 metabolite model had an
R2 = 0.83, Q2 = 0.81, and an AUC of 1. Permutation testing
showed that the probability of either of these models randomly
occurring was less than 0.001 (Supplementary Figure S4, Sup-
porting Information). Of the 19 signature metabolites, 11 were
also detected in the RUPP model study. The PLS-DA RUPP
model built using only these metabolites gave an R2 = 0.66, Q2 =
0.65, and an AUC of 0.98 (Figure 5c). Again, permutation testing
showed that the probability of models of this quality randomly
occurring is less than 0.001 (Supplementary Figure S4, Support-
ing Information).

’DISCUSSION

Accumulating evidence suggests that small for gestational age
is a complex syndrome with multiple biological pathways con-
tributing to the etiology. We have, therefore, taken a holistic and
data-driven, systems biology approach88 to identify a metabolic
signature in plasma that is predictive of SGA. We hypothesized
that widespread alterations of peripheral plasma precede the
clinical onset of SGA, and that these alterations would be
reflected by correlated changes in metabolite levels in cord
venous plasma from affected cases. The overall study comprised
of three consecutive independent studies: (a) time-of-disease bio-
marker discovery in cord blood plasma originating from the placenta,

(b) biomarker validation in an animal model (c) validation of
biomarkers in a presymptomatic clinical setting.

Using robust data mining and modeling techniques in these
three independent studies, we have shown that a combination of
19 metabolites representing the latent systems-wide interaction
in the metabolome is sufficient to produce a robust predictive
model of presymptomatic SGA with an AUC of 0.9 (Figure 5).
The efficacy of these 19 metabolites is also seen in the venous
cord plasma and, for those detected (11 of the 19) in the RUPP
model. For all of the studies, any given individual metabolite from
this panel is not highly significant; however, when these meta-
bolites are combined into a single multifactorial model, the
power of such data-driven technology proves its worth. The
need for such a multifactorial approach reflects the high prob-
ability that complex diseases such as SGA have more than
one cause.

(a). Time-of-Disease Biomarker Discovery
Metabolic profiling of venous umbilical cord plasma revealed

comprehensive disruption of plasma metabolism when com-
paring SGA babies with normal weight controls. Multivariate

Table 2. Characteristics and Pregnancy Outcome of Women
Who Later Developed SGA and Controls in the Week-15
Studya

SGA n = 40 controls n = 40 p-value

Maternal Characteristics

Age (years) 23.4 (5.4) 24.2 (5.2) 0.49

Ethnicity

- Caucasian 39 (97.5) 39 (97.5) 1.0

- Other 1 (2.5) 1 (2.5)

At 15 weeks gestation

Body mass index (kg/m2) 25.0 (4.5) 23.8 (3.8) 0.21

Systolic blood pressure (mmHg) 109 (9) 107 (10) 0.49

Diastolic blood pressure (mmHg) 64 (8) 62 (7) 0.26

Current smoker 15 (37.5%) 6 (15%) 0.02

Gestation at blood sampling (wks) 14.9 (0.7) 15.0 (0.7) 0.87

Pregnancy Outcome

Systolic blood pressure (mmHg) 129 (15) 121 (8) 0.006

Diastolic blood pressure (mmHg) 76 (9) 74 (6) 0.23

Gestational hypertension 8 (13%)

Gestation at delivery (wks) 39.6 (1.6) 40.2 (1.0) 0.05

Preterm Delivery (<37 wks) 3 (7.5%) 0.24

Birthweight (g) 2608 (309) 3624 (359) <0.0001

Customized birthweight centile 4 (2, 6) 62 (44, 76) <0.0001
aValues are mean (SD), median (interquartile range) or number (%).

Figure 4. Seven-hundred eighty-five metabolite features were consis-
tently detected in both the venous cord plasma and week-15 experi-
ments. The biplot compares the univariate significance values for these
common metabolite features. Each point in the biplot represents one of
the observed common metabolite features with respect to the venous
cord plasma study (SGA vs Control) and week-15 study (SGA vs
Control). A circle indicates a metabolite that significantly changes in
both the venous cord plasma and week-15 significance tests. The
triangles indicate metabolites that are significantly changed in week-15
but not significantly changed in venous cord plasma, and the squares
indicate metabolites that are significantly changed in venous cord plamsa
but not significantly changed in week-15. The crosses indicate no
significant change in either the venous cord plasma or week-15 samples.
Points lying in zone A show a mean increase in metabolite level for week-15
samples and a mean decrease in venous cord plasma samples; zone B
show a mean increase in metabolite level for both venous cord plasma
and week-15 samples; zone C show a decrease in mean metabolite level
for both venous cord plasma and week-15 samples; zone D show a
decrease in mean metabolite level for week-15 samples and an increase
for venous cord plasma samples.

http://pubs.acs.org/action/showImage?doi=10.1021/pr2002897&iName=master.img-004.jpg&w=240&h=221
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Table 3. Putatively Identified Metabolites That Were Significant (p < 0.05) in Venous Cord Plasma and the Week-15 Plasma
Studiesa

venous cord plasma week-15 plasma

putative metabolite identity based on exact mass p-value direction p-value direction

Pregnanediol-3-glucuronide OR 3alpha,20alpha-dihydroxy-5beta-pregnane 3-glucuronide 0.008 DOWN 0.003 UP

LysoPC(16:1) OR Cervonyl carnitine 1.10 � 10�5 DOWN 0.021 UP

6-hydroxysphingosine OR (4OH,8Z,t18:1) OR 3b-Allotetrahydrocortisol OR

15-methyl-15-PGD2 OR 15R-PGE2 methyl ester

0.001 DOWN 0.026 UP

Leucyl-leucyl-norleucine OR Sphingosine 1-phosphate 0.040 DOWN 0.028 UP

Cervonyl carnitine AND/OR 1R,25-dihydroxy-18-oxocholecalciferol 3.09 � 10�6 DOWN 0.035 UP

17-[(Benzylamino)methyl]estra-1,3,5(10)-triene-3,17beta-diol 2.68 � 10�4 DOWN 0.045 UP
a PC, phosphocholine; PGD, Prostaglandin D; PGE, prostaglandin E.

Table 4. Putatively Identified Metabolites That Were Used in the Final 19 Metabolite Predictive Venous Cord Plasma andWeek-
15 Plasma ModelsP-values for those metabolites detected in the RUPP model are included for comparison

venous cord plasma week-15 plasma RUPP plasma

putative metabolite identity based on exact massa HMDB class p-value direction p-value direction p-value direction

Phenylacetylglutamine OR Formyl-N-acetyl-5-

methoxykynurenamine

Amino Acids OR Amino Ketones 0.15 DOWN 0.06 DOWN

Leucyl-leucyl-norleucine OR Sphingosine 1-phosphate Amino Acids OR Sphingolipids 0.04 DOWN 0.03 UP 0.19 UP

Cervonyl carnitine AND/OR 1R,25-dihydroxy-
18-oxocholecalciferol

Carnitines OR Vitamin D

derivatives

3.09� 10�6 DOWN 0.004 UP 0.04 UP

(15Z)-Tetracosenoic acid OR 10,13-Dimethyl-

11-docosyne-10,13-diol OR trans-selacholeic acid

Fatty Acids 0.006 DOWN 0.28 UP 0.02 UP

Hexacosanedioic acid Fatty Acids 0.02 DOWN 0.19 UP

Pentacosenoic acid OR Teasterone OR Typhasterol Fatty Acids 0.02 DOWN 0.21 UP

Cycloheptanecarboxylic acid OR Cyclohexyl acetate OR

Octenoic acid OR Methyl-heptenoic acid OR

4-hydroxy-2-octenal OR DL-2-Aminooctanoic acid

OR 3-amino-octanoic acid

Fatty Acids OR Amino Acids 0.09 DOWN 0.07 UP

DG(32:0) Glycerolipids 0.01 UP 0.39 UP 0.09 UP

LysoPC(18:2) Glycerolipids 2.27� 10�6 DOWN 0.37 DOWN 0.005 DOWN

Hydroxybutyrate OR Hydroxy-methylpropanoate

OR Methyl methoxyacetate

Hydroxy Acids 0.08 DOWN 0.08 UP 0.23 UP

LysoPC and PC - more than 10 hits Phosphocholine 6.57� 10�6 DOWN 0.25 UP 0.001 UP

PC - more than 20 hits Phosphocholine 0.08 DOWN 0.04 DOWN

PC OR ubiquinone-8 Phosphocholine 0.01 DOWN 0.2 DOWN 0.66 DOWN

Acetylleucyl�leucyl-norleucinal OR Oleoylglycerone

phosphate OR LPA(0:0/18:2(9Z,12Z)) OR

1�16:1-lysoPE OR PC(O-11:1(10E)/2:0)

OR (3s)-3,4-Di-N-Hexanoyloxybutyl-1-Phosphocholine

OR N-(3-hydroxy-propyl) arachidonoyl amine OR

N-(2-methoxy-ethyl) arachidonoyl amine OR

N-methyl N-(2-hydroxy-ethyl) arachidonoyl amine

OR SIMILAR

Phospholipids 0.08 UP

LysoPC(16:1) OR Cervonyl carnitine Phospholipids OR Carnitines 1.10� 10�5 DOWN 0.02 UP 0.005 UP

Sphinganine 1-phosphate Sphingolipids 0.14 DOWN 0.03 UP 0.09 UP

Sphingosine 1-phosphate Sphingolipids 0.08 DOWN 0.05 UP 0.58 UP

Pregnanediol-3-glucuronide OR 3alpha,20alpha-dihydroxy-

5beta-pregnane 3-glucuronide

Steroid conjugates 0.008 DOWN 0.003 DOWN

6-hydroxysphingosine OR (4OH,8Z,t18:1) sphingosine OR

15-methyl-15-PGD2 OR 15R-PGE2 met, hyl ester

Steroids and Steroid Derivatives 0.001 DOWN 0.02 UP

aDG, Diglyceride; PC, Phosphocholine; PGD, Prostaglandin D; PGE, prostaglandin E.
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Figure 5. PLS-DA model predictions for the final 19-metabolite signature found by the Genetic Algorithm search program. (a) Model predictions for
the week-15 plasma data. R2 = 0.61,Q2 = 0.56, an AUC of 0.90 and an optimal odds ratios of 44 (95%CI 9� 214). (b)Model predictions for the venous
cord plasma data. R2 = 0.83, Q2 = 0.81, and an AUC of 1. (c) Of 19 signature metabolites 11 were detected in the RUPP model analysis. The PLS-DA
model built using these metabolites gave an R2 = 0.66,Q2 = 0.65, and an AUC of 0.98. Permutation testing showed that the probability of models of this
quality randomly occurring is less than 0.001 in all cases (Supplementary Figure S4).

http://pubs.acs.org/action/showImage?doi=10.1021/pr2002897&iName=master.img-005.jpg&w=310&h=619
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modeling revealed a predictive sensitivity of 1, and specificity
of 1. By assessing SGA at time-of-disease and as close as possible to
the hypothesized placental (dys)functional mechanism, we have
uncovered evidence of a systemic change in metabolism due to
this condition. It is important to note that clinical variables such
as model of delivery, ethnicity, and lifestyle (see Table 1) were
not controlled in this study (although matched between cases
and controls). In addition no dietary constraints were imposed
on the participating women. These variables have the potential of
being confounding factors. However, even in a relatively small
sample population, any confounding effects did not diminish the
significance of the overwhelming system-wide disruption of the
plasma metabolome associated with SGA at time-of-disease.
Thus, we can postulate that the metabolic signature uncovered
is likely to be associated with the disease state alone. This
conclusion is substantiated by the correlated results found in
the two subsequent studies.

(b). Biomarker Validation in an Animal Model
Comprehensive disruption of metabolism was also observed

when comparing the metabolic profiles in plasma of RUPP with
normal pregnant rats. When the venous cord plasma biomarker
signature was compared to the RUPP biomarker signature there
was significant correlation between the two experiments
(Figure 3). From this figure, it is also clear that, irrespective of
significance, the majority of the detected change in the respective
metabolome shows a reduction in metabolite levels due to SGA
in cord plasma and systemic elevation in the same metabolites
due to reduced uterine perfusion pressure in rat plasma
(quadrant A). This differential change may well reflect that the
sampling locations were on either side of the placental barrier at
time-of-disease. The “mirror image” responses may be indicative
of the failure of the placenta to regulate the required nutrients
and oxygen needed for successful fetal growth and development.
Placental dysfunction may reduce the essential metabolites
passing through the placental-barrier to the fetus, and the excess
dissipated back into maternal blood; thus increasing the detected
metabolite levels in maternal SGA plasma. For the metabolites
that were detected in the RUPP plasma study there was no
significant association with the stress of the experimental proce-
dure (i.e., between sham and controls). This finding is also
reflected in the PLS-DA model (Figure 2 and Figure 5c) where
there is no significant difference between the sham and control
populations with respect to the predicted PLS scores. This result
is substantiated by the fact that the sham operated rats had
exactly the same pup weights as the control group, suggesting
that surgery per se has no lasting metabolic consequences.

A number of the putatively identified metabolites in both cord
and RUPP plasma demonstrated disruption in carnitine meta-
bolism (Supplementary Table 1, Supporting Information). These
were all decreased in cord and increased in RUPP plasma. Carnitine
is an essential factor in fatty acid metabolism in mammals. Its
most important known metabolic function is to transport fatty
acids into the mitochondria of cells for oxidation.89 The placenta
has a high activity of fatty acid oxidation enzymes90 and where
defects in long-chain fatty acid oxidation are noted, there is a
higher frequency of SGA.91 Previous studies have also found
reduced levels of carnitine and acylcarnitines in cord blood of
SGA infants.92,93 Other rat studies of placental insufficiency have
reported down-regulated insulin receptor and reduced expres-
sion of enzymes involved in fatty acid formation and oxidation as
well as altered skeletal muscle mitochondrial lipid metabolism in

the growth-restricted pups.94,95 These metabolic changes may
also play a role in the long term effects associated with SGA.

(c). Biomarker Validation in a Presymptomatic Clinical Setting
When the biomarker signature of SGA in cord plasma was

investigated in peripheral blood collected at 15 ( 1 weeks’
gestation, the disruption of metabolism was consistent with the
previous two studies; however, the change inmetabolism was less
severe. Only 29 metabolite features were significant after uni-
variate testing in both the cord plasma and week-15 studies
(6 identified � Table 3); however, irrespective of significance,
Figure 4 shows that there is a clear trend for metabolites to have
reduced levels in the cord plasma and elevated levels in the
peripheral maternal plasma. These findings were consistent with
the comparison of cord plasma with RUPP plasma (Figure 3).
This would again suggest that the source of this disruption is at
the placental level.

(d). Nineteen Metabolite Signature of SGA Across All Three
Studies

Finally, a 19 namedmetabolomic signature of presymptomatic
SGA was uncovered using a Genetic-Algorithm search program,
utilizing both the venous cord plasma andweek-15 data. The final
panel of metabolites proved effective at discriminating SGA
plasma from controls in both the presymptomatic week-15
(AUC = 0.9) and the venous cord plasma data. This suggests
that the phenotype of SGA is not only multifactorial, (especially
so, early in pregnancy), but that ultimately, metabolomic analysis
may provide a predictive early screening test for SGA.

A number of sphingolipids were among this panel of meta-
bolites. Sphingolipids are ubiquitous in mammals, playing im-
portant roles in signal transmission and cell recognition and are
commonly believed to protect the cell surface against harmful
environmental factors by forming a mechanically stable and
chemically resistant outer leaflet of the plasma membrane lipid
bilayer. In particular, sphingosine 1-phosphate (S1P) has been
shown to be an important mediator in the signaling cascades
involved in apoptosis, proliferation and stress responses.96,97 It is
also known that growth restriction is associated with increased
apoptosis and reduced cytotrophoblast proliferation.30,31

Phospholipids also showed significant disruption. Phospholi-
pids are the major lipid constituents of cell membranes. Changes
in normal oxygen tensions, which are associated with the
pathophysiology of SGA, can cause changes to glyceropho-
sphotidyllipids resulting in many different products which have
many different proposed biological properties.98 The phospho-
lipid changes observed in this study are most likely a result of cell
membrane damage leading to the subsequent release of phos-
pholipids. However, there is recent evidence of antiphospholipid
antibodies (and complement activation) co-operating in trigger-
ing a local inflammatory process, eventually leading to placental
thrombosis, hypoxia, and neutrophil infiltration.99

SGA and Fetal Growth Restriction. The metabolites from
the 19-metabolite SGA panel that were detected in the RUPP
study (11 of the 19 metabolites) were tested for their multi-
factorial discriminatory power in the RUPP plasma samples.
With a PLS-DA AUC of 0.98, it is probable that there is some
causal connection between the SGA metabolite signature and
the rat model of severe growth restriction. This is reinforced by
the high number of overlapping significant metabolites in the
comparison of RUPP to venous cord plamsa (Figure 3; Supple-
mentary Table 1, Supporting Information).
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Fetal growth restriction (FGR) is defined as failure of a fetus to
achieve its genetically determined potential size. Currently,
classifying babies as growth restricted with a high degree of
specificity and sensitivity is a complex process, and is difficult to
measure in a general clinical setting. It is common practice for
SGA to be used as the surrogate end point for FGR.9,100

However, not all fetuses that are SGA are pathologically growth
restricted and, in fact, as many as 30% may be constitutionally
small.11 Therefore, we recognize that there are limitations in the
use of the birth weight percentile as a surrogate marker of FGR.
It is possible, given the evidence presented here, that we have

in fact found a metabolic signature for FGR rather than the more
general disease classification SGA. This hypothesis is reinforced
by examining the prediction scores of the 19-metabolite PLS-DA
model for the week-15 plasma (Figure 5a). Although, as a general
measure of quality an AUC = 0.9 is excellent, it can readily be
seen from the predictive scatter plot that several SGA samples are
misclassified. Of note, the “misclassification rate” of 30% is close
to the estimatedmisclassification rate using SGA as the end point
for FGR discussed above.
One potential limitation of this study is the number of smokers

(SGA = 15; Controls = 6) and the number of SGA women with
Gestational Hypertension (n = 8) in the week-15 Adelaide study.
Population matching was performed as rigorously as possible;
however, our nested case-control study was limited by the size of
the overall SCOPE prospective cohort, and excluding these parti-
cipants would have significantly reduced the power of the study.
Moreover, one of the main objectives of our work is to develop a
screening test that performs robustly in all populations. The
predictive ability of the final model (combined with agreement
with the venous cord blood and RUPP studies) clearly outweighs
any possible confounding influence of the above factors.

’CONCLUSIONS

This combined study clearly illustrates the utility of integrating
metabolomic analysis of different sample types when investigating
diseases/syndromes which are believed to have complex multi-
factorial etiologies. The unambiguous identification of potential
biomarkers at time-of-disease, and thus as close to the clinical end
point as possible, followed by validation using an animal model with
known causality, provided the reasoning for their further investiga-
tion in maternal blood at an early, and hence clinically useful, time
point. The dramatic metabolic differences of sampling at opposite
sides of the placenta are also demonstrated giving support to the
evidence that the disruption is at the placental level.

This is the first time any clear biomarkers for SGA have been
discovered using any technology. Ongoing metabolomics work
with a larger prospective cohort of healthy nulliparous women
will further validate the predictive model. A presymptomatic
predictive test in early pregnancy will have a significant impact on
clinical care, streamlining surveillance to those deemed to be at
higher risk. Such a test and greater understanding of the
pathophysiology will provide the basis for developing therapeutic
interventions that could minimize the likelihood of serious
complications later in pregnancy and throughout life.
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