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Abstract 

Background 

Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) is commonly used to 

identify differentially expressed proteins under two or more experimental or observational 

conditions. Wu et al (2009) developed a univariate probabilistic model which was used to 

identify differential expression between Case and Control groups, by applying a Likelihood 

Ratio Test (LRT) to each protein on a 2D PAGE. In contrast to commonly used statistical 

approaches, this model takes into account the two possible causes of missing values in 2D 

PAGE: either (1) the non-expression of a protein; or (2) a level of expression that falls below 

the limit of detection. 



Results 

We develop a global Bayesian model which extends the previously described model. Unlike 

the univariate approach, the model reported here is able treat all differentially expressed 

proteins simultaneously. Whereas each protein is modelled by the univariate likelihood 

function previously described, several global distributions are used to model the underlying 

relationship between the parameters associated with individual proteins. These global 

distributions are able to combine information from each protein to give more accurate 

estimates of the true parameters. In our implementation of the procedure, all parameters are 

recovered by Markov chain Monte Carlo (MCMC) integration. The 95% highest posterior 

density (HPD) intervals for the marginal posterior distributions are used to determine whether 

differences in protein expression are due to differences in mean expression intensities, and/or 

differences in the probabilities of expression. 

Conclusions 

Simulation analyses showed that the global model is able to accurately recover the underlying 

global distributions, and identify more differentially expressed proteins than the simple 

application of a LRT. Additionally, simulations also indicate that the probability of 

incorrectly identifying a protein as differentially expressed (i.e., the False Discovery Rate) is 

very low. The source code is available at https://github.com/stevenhwu/BIDE-2D. 
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Background 

Two-dimensional polyacrylamide gel electrophoresis (2D PAGE) separates hundreds or 

thousands of proteins simultaneously by their isoelectric point and molecular weight [1]. 

There are two main approaches to analyse 2D PAGE: (1) an image-based approach, which 

analyses the raw or preprocessed gel images [2,3], and (2) a spot-based approach, whereby a 

standard analytical pipeline is used to identify up- or down-regulated proteins by gel 

scanning, spot-detection and spot-matching using appropriate software [4,5]. Data obtained 

are expressed as absolute or relative protein intensities, typically transformed into log-values. 

By detecting statistically significant differences in the spot intensities under different 

experimental or sampling conditions, 2D PAGE is a useful technique for exploring 

potentially differentially expressed proteins. 

Most of the commercial packages for 2D PAGE analysis include several standard statistical 

analysis methods, for example, two-sample Student's t-tests, Analysis of Variance, and 

Principal Component Analysis [6,7]. Nonetheless, a significant challenge with most 2D 

PAGE analyses is the problem of missing values, whereby spots on one gel are not identified, 

or matched with, spots on another gel [8]. This should not come as a surprise: the expression 

of proteins varies from individual to individual from one experimental condition to the next, 

along with technical variation between gels. Previously, we proposed a likelihood-based 

model that identified differentially expressed proteins, and which accounted for missing 



values by positing a class of proteins where the probability of non-expression is greater than 

zero [9]. In particular, we divided missing values into two categories, due either to the non-

expression of a protein, or a level of expression that fell below the limit of detection [3,10]. 

The likelihood function utilized a mixture of the two probabilistic models, thus allowing both 

possible causes of missing values. By applying a Likelihood Ratio Test (LRT), we classified 

a protein as “differentially expressed” if there was statistically significant support for either a 

difference in mean expression intensities or a difference in the probabilities of expression 

across the two categories. 

In this paper, we extend our univariate likelihood model to a global model. The aim of a 

global model is to utilize the relationship between spots so that information about expression 

probabilities and differences in mean expression intensities can be modeled coherently across 

all spots. The global likelihood model proposed in this paper maintains all the advantages of 

the local model proposed previously, that is, the incorporation in the model of probabilities of 

expression and a limit of detection. Additionally, the global model includes several 

parametric probability functions that deliver the expected probability of expression and mean 

expression intensities for individual spots. In other words, the probability of expression and 

the mean expression intensity for any given spots are random variables drawn from global 

distributions of these variables, and the parameters of these global distributions are estimated 

from all expression data. While the characterization and use of global distributions of 

expression frequencies and intensities is not novel [11,12], this is the first time that this type 

of approach has been applied to the problem of modeling protein abundance in 2D PAGE. 

The empirical distributions of these data sets lend themselves to approximations by well-

studied statistical distributions, and their use in statistical inference delivers greater power to 

detect differentially expressed spots. We illustrate the properties of the global model using 

simulated data, where the true parameters of the probabilities of expression, and the mean 

expression intensities are known. 

Methods 

The Global Bayesian Model 

In our paper, the global model is applied to a case–control experimental design, where 

subjects belong to either a Case (disease) or Control group. Under the simplest experimental 

design, individuals are assigned to either the Case or Control group, and each subject has a 

sample that is processed using 2D-PAGE. This approach produces as many 2D-PAGE gels as 

there are subjects, and after application of the appropriate software algorithms, a list of 

“spots” is produced (corresponding to proteins that were expressed on at least one gel), along 

with the intensities of these spots for each gel. Before any analysis is carried out, we calculate 

the relative intensities by dividing the intensity of individual spots by the sum of all 

intensities on the corresponding gel, followed by log2 transformation. In many instances, 

there will be no intensity value for a given protein, indicating (as previously noted), that the 

spot was not expressed or not detected. These spots are indicated by “NA” in the dataset. 

The global model proposed here is a hierarchical model with two layers. The first layer is 

referred to as the local layer. This layer calculates the likelihood for an individual protein, 

with each protein having its own parameters. The second or “global” layer connects all 

parameters from the local layers together. Parameters associated with this layer are referred to 

as global parameters. Since the model attempts to recover a large number of parameters, it is 



analytically and computationally cumbersome to obtain estimates within a likelihood-based 

framework. Instead, we have chosen to use Bayesian Markov chain Monte Carlo (MCMC) 

integration (described below), which is a computationally tractable approach. More 

importantly, Bayesian MCMC integration allows us to specify prior probability distributions 

that capture what we expect our parameters to look like when there is no difference between 

Case and Control. Since the point of Bayesian inference is to recover the posterior 

distribution (i.e., the distribution of the model parameters, after the incorporation of new 

data), any significant deviation between the posterior and the prior distributions is a signal 

that there are statistical differences between Cases and Controls. 

The local layer 

The local layer focuses on the expression of an individual spot and can be described by four 

parameters. These four parameters are: 1) the mean for control group expression intensity μ, 

2) the difference between case and control mean expression intensities δ, (i.e., the mean for 

the case group is calculated by μ1 = μ0 + δ), 3) the probability of expression for the control 

group p0, which can be expressed an a function of κ and 4) the difference between 

probabilities of expression between the two groups, τ. The probabilities of expression for the 

Control and Case groups are calculated by 
0

exp

1 exp
p  and 

1

exp

1 exp
p  

respectively. Both groups are assumed to have the same standard deviation for expression 

intensities, σs, the details of which will be discussed later. 

The likelihood of a parameter is defined as the probability of obtaining the observed data 

given a specified value of that parameter. Let L(Θs) be the likelihood associated with the 

expression intensity of protein s on the gel, where Θs = (μs, δs, κs, τs, σs, d), and the subscripts 

denote parameters specified for protein s. Cx,s,i denotes the intensity of protein s for subject i 

from group x (“1” for the Case group and “2” for the Control group), and d is a constant 

representing the limit of detection. The univariate likelihood can be rewritten as: 
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The likelihood for each individual protein intensity, Cx,s,i is calculated by the univariate 

likelihood model proposed previously; 
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and λ is the scaling factor to ensure the truncated normal distribution integrates to one: 
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where d is the limit of detection and ν is the maximum expression value. 

Briefly, the univariate model allows for two cases in Equation 1: 

(1) 

When the intensity, Cx,s,i is less than the level of detection, the the likelihood function 

reflects a mixture of the possibilities that either the protein was not expressed (i.e., 1 – ρx, 

where ρx is the probability of expression), or that the protein was expressed but fell below 

the level of detection (the second term on the right hand side of the first row, in Equation 

2). 

(2) 

When the intensity is greater than the level of detection, the likelihood function is given 

by a truncated normal distribution, with the lower tail truncated at d, the level of detection 

(second row of Equation 2). 

The joint likelihood for all proteins at the local layer is the product of the likelihood for each 

individual protein and can be calculated as: 

1

S

L S

s

L L  (4) 

where L(ΘL) is the likelihood for all proteins at the local layer and S is the total number of 

proteins in the 2D PAGE experiment. 

The global layer 

The global layer ties all the parameters in the local layer together. All mean expression 

intensities for the individual proteins from the Control group are assumed to be normally 

distributed with mean ug and standard deviation σg. The likelihood function is: 
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All proteins are assumed to have the same standard deviation of expression intensities 

(measured on the log scale), which is calculated by multiplying σg by the spot standard 

deviation scalar parameter ψ. Therefore the spot standard deviation σs = ψσg is used to 

calculate the likelihood for each spot in the local layer. This allows the model to efficiently 

estimate the spot standard deviation and explore the potential relationship between σs and σg. 

To model the distribution of mean expression intensities for proteins from the Case group, we 

use δs as the difference between mean expression intensities between Case and Control 

groups. Each 2D PAGE experiment detects a large number of proteins (800 ~ 1200) and the 

difference between two mean expression intensities δs is generally close to zero for most of 

the proteins. An appropriate distribution for δs is the exponential distribution, which has a 



peak at 0. However, since there can be both negative and positive values of δs, we use a 

modified Laplace distribution centered at zero. The Laplace distribution is essentially two 

exponential distributions, decaying symmetrically in both directions, from a mean of zero. 

The modification we make is to allow each side of the Laplace distribution to be weighted 

differently. This allows different numbers of Case group proteins to be up regulated (positive 

values of δs) or down regulated (negative values of δs). The proportion of up-regulated 

proteins is ϕδ, and is bounded between zero and one. Therefore the proportion of down-

regulated proteins can be calculated as 1-ϕδ. The likelihood function for δs is: 
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Both parameters relating to the probability of expression follow normal distributions: at the 

global layer, the values of κs (the probability of individual protein expression in the Control 

group) are random variables drawn from a normal distribution with mean μκ and standard 

deviation σκ. Similarly, the parameters specifying the expression probabilities in the control 

and case groups, κs and τs, are random variables of a normal distribution with mean μτ and 

standard deviation στ. The likelihood equations for these parameters are: 

2

2

1
| , exp

22

s

sf  (7) 

and 
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In total, there are nine parameters at the global layer, and the marginal likelihood for the local 

parameters can be expressed as: 
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Markov Chain Monte Carlo (MCMC) 

Bayesian inference and the Metropolis-Hastings algorithm 

Bayesian inference recovers the degree of belief in the values of parameters by combining 

information from the data and a priori knowledge of the distribution of model parameters. 

The result is a posterior distribution p(θ|D), which is often expressed as: 

| |p D p D p  (10) 



Here, p(D|θ) denotes the likelihood function, and p(θ) is the prior distribution of the 

parameter set θ. The posterior distribution p(θ|D) summarizes the degree of belief in θ, based 

on the observed data, D, and prior knowledge of the parameter set. 

For complex analyses, including the estimation of parameters in many mixture models, it is 

often difficult to obtain the posterior distribution directly. Markov chain Monte Carlo 

(MCMC) integration is a computationally tractable and commonly used solution to the 

problem. It is an iterative procedure which attempts to recover the posterior distribution by 

sampling the permissible parameter space. One common implementation of MCMC uses the 

Metropolis-Hasting algorithm [13,14], which can be described by the following steps. 

Step 1: Begin with initial state Θ. 

Step 2: Make a small change to the parameter θ
i
 to θ* according to a proposal distribution 

q(θ*|θ
i
). 

Step 3: Calculate the acceptance ratio α, using the following formula: 

* *

*

| |
min 1,

| |

i

i i

f d q

f d q
 (11) 

Generate μ from U(0, 1) and accept θ
i+1 = θ*

 if μ < α. . 

Otherwise θ
i+1 = θi

. 

Step 4: Set i = i + 1 and repeat Step 1. 

The algorithm is repeated until the Markov chain is sampling from the target distribution, 

typically the (joint) posterior distribution of the parameter(s). 

When the Markov chain reaches the stationary or equilibrium distribution, the 95% highest 

posterior density (HPD) region for the marginal posterior distribution for each parameter can 

be calculated. The 95% HPD region consists of the smallest collection of potential parameter 

values such that the marginal posterior probability of the parameter falling into this region is 

at least 95%. 

Prior and proposal distributions 

Bayesian inference requires a choice of prior distributions that reasonably characterize the 

uncertainty in the parameter values before new data are added, or that are based on 

distributional information that may be gleaned from previous analyses [15]. Here, we have 

chosen prior distributions using the former approach, although the “reasonableness” (or 

otherwise) of these distributions have been loosely assessed against previously obtained data 

(Table 1). The method we describe can, of course, be used for any set of prior distributions, 

and the software we developed can be modified to accommodate alternative priors; we 

recommend, however, that users choose prior distributions that suit their specific 

experimental design. 

Table 1 List of prior distributions used in the global model 

Global parameter θ
i
 Prior distribution p(θ

i
) 

μg Normal ~ (μ = −3,σ = 5) 



σg Γ
-1

(shape = 0.001, rate = 0.001) 

ψ Uniform ~ (0.001, 2) 

λδ Exponential ~ (λ = 1) 

ϕδ Beta ~ (alpha = 2,beta = 2) 

μκ Normal(μ = 0,σ = 3) 

σκ
2
 Γ

-1 ~ (shape = 0.001,rate = 0.001) 

μτ Normal ~ (μ = 0,σ = 3) 

στ
2
 Γ

-1 ~ (shape = 0.001,rate = 0.001) 

For the global mean expression intensity μg, we used a normal distribution centered at −3 

with a standard deviation of 5 as the prior. The prior is centered at −3 as the data are log-

transformed relative protein expression intensities. If a gel has 1000 proteins with identical 

expression intensities, then the mean relative percentage volume expression will be 0.1 for 

each protein, which is ~ −3.3 when log2-transformed. However, since we do not know the true 

mean volume, a relatively large standard deviation was assigned to the prior distribution of 

relative expression intensities. There was insufficient information to provide a good estimate 

of the prior distribution for the global standard deviation σg, therefore a relatively flat inverse-

gamma prior σg ~ Γ
-1

(0.001,0.001) was used [16]. 

The modified Laplace distribution is used to model the difference between two mean 

expression intensities. This distribution has two parameters: λδ is the rate for the exponential 

distribution component, and ϕδ is the proportion of up-regulated proteins. The rate parameter 

has an exponential prior of λδ ~ Exp(1). The proportion of up-regulated proteins ϕδ is bounded 

between 0 and 1. If there is approximately an equal number of up- and down- regulated 

proteins then the value of ϕδ will be close to 0.5. Therefore the density function for the prior 

should peak around 0.5 and decrease as ϕδ moves toward 0 or 1, thus, a Beta(2,2) distribution 

was used as the prior for ϕδ. 

The means for both the probability of expression in the Control group, μκ, and the difference 

between probabilities of expression between the two groups, μτ, have more stringent priors. A 

normal distribution centered at 0 with a standard deviation of 3 is used for both parameters. 

Under the reparameterisation procedures described earlier, exp1

exp
0p

 and 

exp1

exp
1p

, if the probabilities of expression for the control group are given by 

ρ0 = 0.95, this would correspond to κ ~2.94. We believe that it is unnecessary to distinguish 

the probability of expression between 0.95 and 1 because the difference is unlikely to be 

biologically significant. Therefore a relatively small standard deviation was assigned to the 

prior distribution to avoid κs or τs moving towards very large values. Consequently, this also 

prevents false positive results which may occur when the model attempts to distinguish the 

difference between probabilities of expression beyond 0.95. 

A proposal distribution, q(θ), was used to generate a candidate value θ* based on the current 

parameter value θ
i
 with the probability q(θ*|θ

i
). The proposal distributions used in this paper 

are also given in Table 2, and are typical for the types of parameters in our model. The 

following describes the rationale for the use of non-standard proposal distributions for a 

subset of parameters. 



Table 2 List of proposal distributions for both global and local parameters 

Global parameter θ
i
 Proposal distribution q(θ*|θ

i
) 

μg Truncated-Normal ~ (μ = μg, lower = d, upper = log2(100)) 

σg Truncated-Normal ~ (μ = σg, lower = 0.01) 

ψ Truncated-Normal ~ (μ = ψ, lower = 0.001, upper = 2) 

λδ Truncated-Normal ~ (μ = λδ, lower = 0.01) 

ϕδ ϕδ' = Normal ~ (μ = ln[ϕδ/(1-ϕδ)]), ϕδ* = exp(ϕδ')/[1 + exp(ϕδ')] 

μκ Normal ~ (μ = μκ) 

σκ Truncated-Normal ~ (μ = σκ, lower = 0.01) 

μτ Normal ~ (μ = μτ) 

στ Truncated-Normal ~ (μ = στ, lower = 0.01) 

Local parameter θ
i
 Proposal distribution q(θ*|θ

i
) 

μs Normal ~ (μ = μs) 

δs Normal ~ (μ = δs) 

κs Normal ~ (μ = κs) 

τs Normal ~ (μ = τs) 

d = limit of detection 

The standard deviation for all proposal distributions are controlled by the tuning parameters 

The proportion of up-regulated proteins ϕδ was bounded between 0 and 1. Therefore a logit 

transformation was applied to ϕδ to obtain a value without boundaries logit(ϕδ) = ϕδ /(1-ϕδ). 

A normal distribution with mean set to logit(ϕδ) was then used to propose a new value ϕδ'. 

Finally, an inverse-logit transformation was applied to ϕδ' to obtain the candidate value ϕδ* 

which is always between 0 and 1. 

The global standard deviation, σg, the rate parameter for the exponential distribution, λδ, the 

standard deviation for the probabilities of expression, σκ, and the standard deviation for the 

difference in the probabilities of expression, στ, all have the same proposal distributions, a 

truncated normal distribution with lower bound set to 0.01 and no upper bound. The 

theoretical lower limit for these values is 0, but 0.01 was used for two reasons. The first was 

that these values were extremely unlikely to be less than 0.01 for any 2D PAGE experiments. 

Hundreds of different proteins were separated in each 2D PAGE experiment and it is unlikely 

for all the proteins to have very similar means and probabilities of expression. The mean of 

the exponential distribution is 1/λ, and the theoretical maximum intensity for a protein on 2D 

PAGE is log2(100) ≈ 6.64. Therefore we expect λδ to be greater than 0.01 because the mean 

value for δs (the difference between two mean expression intensities) is unlikely to be greater 

than 100. The second reason was to prevent floating point underflow when computing 

extremely small likelihood values when the standard deviation approaches 0. 

Adaptive MCMC 

Since MCMC is a technique that relies on a stochastic perturbation to the current state to 

generate the next state in a chain, the states are autocorrelated. Depending on the proposal 

distributions used, there is a possibility for states to persist in a part of parameter space, and 

mix poorly. We used three different techniques to improve the mixing of the Markov chain: 

tuning parameters, block updating and parameter expansion. 



Roberts et al. [17] suggest that for a single dimension problem the optimal acceptance ratio 

should be 0.43, and 0.234 for higher dimension problems. During each iteration, proposed 

values are recorded regardless of whether they are accepted or not. The acceptance rate is 

calculated and proposal distribution parameters updated according to the following formula, 

1

1

2

2

opt

cur

new

cur

 (12) 

where σnew is the standard deviation of the new proposal distribution and σcur is the standard 

deviation of the current proposal distribution. ρopt is the optimal acceptance ratio, ρcur the 

current acceptance ratio, and Φ
-1

 is the inverse CDF of a standard normal distribution. If the 

acceptance ratio is higher than the optimal acceptance ratio, then the standard deviation for 

the proposal distribution is increased to lower the acceptance ratio and vice versa [18]. The 

standard deviation σnew is updated once every 500 iterations and the current acceptance ratio 

ρcur is averaged over 3000 iterations. 

The second technique is block updating, which was used to reduce the autocorrelation for 

related parameters [19]. A block is created by grouping two or more related variables and 

updating them simultaneously. If two variables are in the same block, then two values will be 

proposed for each iteration of the chain. Only one Metropolis-Hasting ratio will be 

calculated, and both values are then either jointly accepted or rejected. For example, if two 

parameters θ1 and θ2 are paired together, then the joint acceptance ratio is calculated by: 

* * *

1 1 2 2

* *

1 1 2 2

| | |
min 1,

| | |

i i

i i i

f d q q

f d q q
 (13) 

At the local layer, we paired μs and δs together and κs and τs together. At the global level, we 

paired μg and σg together, λδ and ϕδ together, μκ and σκ together and, μτ and στ together. 

Sometimes the variance parameter was not able to move freely, especially when it 

approached zero, resulting in poor mixing. The introduction of an additional parameter which 

links mean and variance together can potentially reduce this issue [20]. This is termed 

“parameter expansion” and it was implemented here to reduce this problem. 

Three parameters were added to the global likelihood model. The term αμ was added to link 

global mean μg and standard deviation σg, and was calculated in the following way: 

2 2 2

' 'g g g g
 (14) 

Within each iteration, instead of one block updating which paired μg and σg
2
 together, two 

block updating was used after parameter expansion was implemented. One block updates 

paired μg' and σg
2
' together, and the other one updates αμ. The other two parameters are ακ 

which links μκ and σκ
2
 together, and ατ which links μτ and στ

2
 together. These two parameters 

were implemented and updated in the same way as αμ. All three parameters had a uniform 

prior between 0.01 and 10, and a truncated normal distribution was used as their proposal 



distribution (Table 3). The mean of the proposal distribution is the current parameter value 

and the standard deviation was controlled by the tuning parameter descried in this section. 

Table 3 Prior and proposal distributions used for the parameters introduced in the 

parameter expansions 

Global parameter θ
i
 Prior distribution p(θ

i
) Proposal distribution q(θ*|θ

i
) 

αμ Uniform ~ (0.01,10) Truncated-Normal ~ (μ = αμ, lower = 0.01) 

ακ Uniform ~ (0.01,10) Truncated-Normal ~ (μ = ακ, lower = 0.01) 

ατ Uniform ~ (0.01,10) Truncated-Normal ~ (μ = ατ, lower = 0.01) 

With the combination of block updating and parameter expansion, there were twelve 

parameters, including nine parameters from the likelihood model and three tuning parameters 

(α) described above. These parameters were grouped and updated in eight different blocks. 

Simulation analysis 

In order to evaluate the global model, we simulated 2D-PAGE data based on studies 

described in our previous paper [9] and compared the results against those obtained using the 

LRT proposed therein. A set of global distributions and global parameters were described 

above and predefined for each simulation. All individual local parameters for each protein 

were drawn from the global distributions. The probability of expression parameters for each 

individual protein determined whether a protein was expressed. The expression intensities for 

an expressed protein were drawn from a normal distribution with an individual protein mean. 

The limit of detection was set to – 8.67, and any simulated value below this threshold was 

treated as missing data. One hundred proteins were simulated because of the amount of time 

required for a MCMC chain to converge (approximately 20 ~ 24 hours for 100 proteins). The 

MCMC algorithm for the global likelihood model was implemented using Java. Thinning 

was used to reduce the autocorrelation and we sampled the states every 1000 iterations. The 

MCMC chain ran for 50 million iterations and we manually inspected the trace plot of the 

posterior probability from multiple runs to check for any inconsistencies. The first 10% of the 

data was discarded as burn-in, to allow the Markov chain to reach the target distribution. The 

Effective Sample Size (ESS) calculated for every parameter. The ESS is the effective number 

of “independent” samples from the Markov chain. All the ESS were calculated using Tracer 

(http://beast.bio.ed.ac.uk/Tracer) [21]; in our analyses, the minimum ESS was always greater 

than 1000. The trace plot and density plot for the log posterior distribution from Simulation 1 

are shown in Figure 1. 

Figure 1 The trace plot (A) and density plot (B) for the log posterior probability from 

Simulation 1 

Once we were confident that the Markov chain was sampling the target distribution, the 95% 

highest HPD for δs and τs was calculated. The local parameter δs and τs represent the 

differences in mean expression intensities between Case and Control groups and the 

probability of expression, respectively. There are three scenarios whereby a protein may be 

classified as statistically differentially expressed: 1) If the 95% HPD for δs does not include 



zero, 2) if the 95% HPD for τs does not include zero, or 3) if the 95% HPDs for both 

parameters do not include zero. 

Simulation 1. Simulation based on a real experiment 

100 differentially expressed proteins, with each protein having different parameter values, 

were drawn from a global distribution with the following parameters: the mean expression 

intensities for the control group followed a normal distribution with a mean of −5 and a 

standard deviation of 1. The standard deviation for each individual protein was 0.7. The 

difference between mean expression intensities was drawn from a modified Laplace 

distribution (described in the global layer section) with λδ = 0.5 and ϕδ = 0.5. The parameter 

associated with the probability of expression, κs was drawn from a normal distribution with a 

mean of 1 and a standard deviation of 1, and τs was drawn from a normal distribution with a 

mean of 0 and a standard deviation of 2. 

Simulation 2. Varying the global distribution of the probabilities of expression 

The second simulation was similar to Simulation 1, except that the values of κs were no 

longer assumed to follow a normal distribution. Instead, for each protein, κs was drawn from 

a uniform distribution between −1 and 3, and τs was drawn from a uniform distribution 

between −2 and 2. All other global parameters were identical to those specified in Simulation 

1. 

Simulation 3. A smaller gap between mean expression intensities and different 

distributions for the probabilities of expression 

In the previous two simulations, λδ for the modified Laplace distribution was set to 0.5, which 

corresponds to a difference between two mean expression intensities of 2. In Simulation 3, 

the difference between two mean expression intensities was set to 1.5 times the protein 

standard deviation, which corresponds to λδ ≈ 0.66. This was done because results from our 

previous study showed that LRT had a reasonable performance when the difference between 

the two mean expression intensities was approximately 1.5 times the standard deviation or 

higher. This simulation also tested the difference between two probabilities of expression 

when drawn from two different distributions. For each individual protein, κs was still drawn 

from a normal distribution with mean 1 and a standard deviation of 0.25, but τs was divided 

into two groups. Half of the proteins were simulated from a normal distribution with mean −3 

and standard deviation of 0.25; the other half were simulated from a normal distribution with 

mean 2 and standard deviation of 0.25. Note that we assigned a relatively small standard 

deviation to these distributions to obtain two non-overlapping normal distributions. This 

extreme scenario is used to test the flexibility of the Bayesian model. All other global 

parameters were identical to Simulation 1. 

Simulation 4. Estimating the false positive rate 

This simulation attempted to investigate the number of proteins falsely classified as 

differentially expressed when there was no difference between two groups. The difference 

between local mean expression intensities δs and the difference between local probabilities of 

expression τs were fixed at 0 for all proteins. All other global parameters were identical to 



Simulation 1. This setting makes two groups identical and allows us to estimate the false 

positive rate of this model. 

Application of model to 2D PAGE data 

We also applied the global model to a 2D PAGE experiment reported previously by Wu et al 

[9] in which we selected differentially expressed spots based on a likelihood ratio test This 

experiment contained 24 individuals, with one gel per individual. Eight hundred and three 

spots were detected and matched using commercial software. 

Results and discussions 

Both the global model and the LRT previously defined in Wu et al (2009) were applied to the 

three simulations. 

Simulation 1. Simulation based on a real experiment 

The mean and the 95% HPD were calculated from the marginal posterior distribution for all 

the global parameters and summarized in Table 4. The true values for several global 

parameters were very accurately recovered: the mean values recovered were very close to the 

true values, for example, the recovered mean for μg was −4.8 (true value was −5), and the 

recovered mean for σg was 1.06 (true value = 1). The 95% HPD for most of the global 

parameters included the true values, for example, the recovered mean for μκ was 0.89 with the 

95% HPD between 0.66 and 1.15 while the true value was 1, the recovered mean for μτ, was 

−0.22 with the 95% HPD between −0.75 and 0.38, while the true value was 0. 

Table 4 Summary of the global parameters for simulation 1, which is based on a real 2D 

PAGE experiment 

Global Parameter Mean from MCMC Lower 95% HPD Upper 95% HPD True Value 

μg −4.8 −5.02 −4.59 −5 

σg 1.06 0.92 1.22 1 

ψ 0.65 0.56 0.75 0.7 

λδ 0.57 0.46 0.69 0.5 

ϕδ 0.57 0.45 0.67 0.5 

μκ 0.89 0.66 1.15 1 

σκ 1.00 0.78 1.24 1 

μτ −0.22 −0.75 0.38 0 

στ 2.48 1.93 3.08 2 

Figure 2 shows the marginal posterior density and prior distributions for the global 

parameters μκ and ψ. The marginal posterior distributions were substantially different from 

the prior distributions used in the model. The approach of plotting the posterior distribution 

against that of the prior is valuable, because it shows that the extent to which the addition of 

new data reduces the uncertainty in the model. The 95% HPDs were also calculated for all 

the local parameters δs and τs, and 85 spots were classified as differentially expressed. The 

LRT was applied to the same dataset and only 71 spots were classified as differentially 

expressed. 



Figure 2 Marginal posterior density and prior distribution for the global parameter (A) 

μκ and (B) ψ 

All but three of the 71 spots identified using the LRT were also identified using the method 

reported here. There were 12 differentially expressed proteins that were not correctly 

classified by both methods. The Venn diagram in Figure 3 summarizes the differentially 

expressed spots classified by each method. 

Figure 3 Number of proteins classified as differentially expressed using each method in 

Simulation 1 

The recovered mean for the proportion of up-regulated proteins ϕδ was 0.57 with the 95% 

HPD between 0.45 and 0.67 (the true value is 0.5). This implied that 57% of the spots were 

considered as up-regulated, that is, the mean expression intensity for the case group was 

higher than the control group. Nevertheless, this does not represent the proportion of 

statistically classified differentially expressed proteins because the statistical classification of 

up- or down regulation depends on whether the 95% HPD of δs for each protein includes 

zero. Under this criterion, there were 38 spots that were (statistically) classified as up-

regulated and 30 spots that were (statistically) classified as down-regulated. 

Simulation 2. The effect of the underlying global distribution on the 

probabilities of expression 

The mean and the 95% HPD were calculated from the marginal posterior distribution for all 

the global parameters and are summarized in Table 5. The mean for the four parameters μg, 

σg, ψ, and ϕδ, were very close to the true value, with the absolute difference less than 0.1. The 

95% HPD interval for λδ (0.5 and 0.79) also included the true value 0.7. 

Table 5 Summary of the global parameters for simulation 2 where the probabilities of 

expression were drawn from uniform distributions 

Global Parameter Mean from MCMC Lower 95% HPD Upper 95% HPD True Value 

μg −5.00 −5.23 −4.79 −5 

σg 1.08 0.93 1.23 1 

ψ 0.69 0.59 0.79 0.7 

λδ 0.62 0.50 0.75 0.5 

ϕδ 0.54 0.43 0.65 0.5 

μκ 0.99 0.70 1.3 κ ~ Uniform(−1,3) 

σκ 1.29 1.03 1.56 κ ~ Uniform(−1,3) 

μτ −0.23 −0.67 0.22 τ ~ Uniform(−2,2) 

στ 1.84 1.41 2.29 τ ~ Uniform(−2,2) 

Figure 4 summarizes the number of proteins classified as statistically differentially expressed 

under each category. The LRT classified 59 spots as differentially expressed and the global 

likelihood model classified 89 proteins. Only one of the spot identified by the LRT was not 

identified by the model reported here. 

Figure 4 Number of proteins classified as differentially expressed using each method in 

Simulation 2 



There were 38 spots classified as statistically up-regulated and 25 spots classified as 

statistically down-regulated. By examining the true values of 100 local parameters, δs, the 

distributions of δs have heavier tail for values greater than 0 then values less than 0 (there are 

more δs greater than 5 then less than −5) (Figure 5)hence the there are more spots are 

statistically classified as up-regulated than down-regulated. 

Figure 5 Density for the true values of 100 local parameters δs. This shows that the 

distributions for values of δs greater and less than 0 were approximately symmetrical 

Simulation 3. Smaller difference between mean expression intensities and 

alternative distributions for the probabilities of expression 

The mean and the 95% HPD were calculated from the marginal posterior distribution for all 

the global parameters and are summarized in Table 6. The 95% HPD intervals for most of the 

parameters included the true values used to simulate the dataset. The two exceptions were μτ 

and στ, which were parameters where recovery of the true underlying distributions was not 

expected since the local parameters τs were simulated from two distinct normal distributions 

that did not overlap. Therefore a single normal distribution was not expected to recover the 

true values. Figure 6 shows the density plot for the 100 local parameters τ, and the probability 

density function for the normal distribution with parameters μτ and στ recovered by the global 

model. The global model adjusted to this change in data by increasing the value of στ to a 

large number with a mean value of 3.65 and 95% HPD interval between 2.89 and 4.46. This 

effectively created a very wide normal distribution which was used to ensure all the τs drawn 

from both underlying normal distributions would have similar likelihoods. This demonstrates 

that the global likelihood model is very robust and is able to adapt to different distributions 

even if the local parameters were not drawn from a single distribution. 

Table 6 Summary of the global parameters for simulation 3 where the difference 

between two probability of expressions were drawn from two normal distributions 

Global Parameter Mean from MCMC Lower 95% HPD Upper 95% HPD True Value 

μg −5.18 −5.39 −4.95 −5 

σg 1.13 0.98 1.29 1 

ψ 0.64 0.55 0.73 0.7 

λδ 0.73 0.57 0.89 0.7 

ϕδ 0.47 0.35 0.60 0.5 

μκ 0.98 0.83 1.12 1 

σκ 0.28 0.11 0.46 0.25 

μτ −0.93 −1.76 −0.16 * 

στ 3.65 2.89 4.46 * 

* 50% τ ~ Normal(−3, 0.25), 50% τ ~ Normal(2, 0.25) 

Figure 6 The density plot for the parameters τ and the global distrubituon recovered by 

the model. The probability density function Normal ~ (μτ = 0.5,στ = 3.38) where μτ and στ 

were recovered by the global model 

Figure 7 summarizes the number of proteins classified as differentially expressed under each 

category. The LRT classified 67 spots as differentially expressed compared to 78 in the 



global Bayesian model. The LRT only picked up three spots that were missed by the method 

described here. 

Figure 7 Number of proteins classified as differentially expressed using each method in 

Simulation 3 

Simulation 4. Estimating the false positive rate 

The 95% HPDs were calculated for all the local parameters δs and τs, and all the HPD 

intervals contained zero. This implied that none of the proteins were classified as 

differentially expressed. The simulations were repeated with 18 and 24 gels in each group 

while all other parameters remained the same. Once again, in these further simulations none 

of the proteins was classified as differentially expressed. This demonstrates that the model we 

propose here has a very low false positive rate. 

2D PAGE Example 

Figure 8 summarizes the number of proteins classified as differentially expressed using the 

MCMC procedure described here (separated according to whether the expression intensity, δ, 

or probability of expression, τ, differed between Case and Control), and the previously 

described LRT procedure [9]. The univariate LRT classified 33 spot as differentially 

expressed compared to 41 in the global Bayesian model. However, several spots classified 

using the LRT were not identified by the global model, and vice versa. Examination of the 

expression data revealed that the global model was often able to identify differentially 

expressed spots when the probability of expression was low in both groups. This is most 

likely due to the fact that the LRT does not have sufficient power to detect differences when 

sample sizes in both groups are small. In contrast, the global model uses a common variance 

(obtained across all spots) for expression intensities, and this allows inferences to be made 

even when sample sizes are low in both groups. 

Figure 8 Number of proteins classified as differentially expressed using each method in 

2D PAGE data 

Of course, because the global model uses a common variance for expression intensities, spots 

where the variances are significantly different from the common variance will not necessarily 

be identified as differentially expressed. This appears to account for those spots that are 

identified by the LRT and not the global Bayesian analysis. 

Conclusions 

We have demonstrated with simulated data that a global Bayesian model is able to correctly 

identify more differentially expressed proteins than the use of the LRT proposed in the 

previous study. In all three simulation analyses, the LRT classified approximately 60% of the 

proteins as statistically differentially expressed, and the global model classified between 75% 

and 89% of the proteins. Additionally, with our simulated data, the global model identified 

correctly identified almost all of the proteins also identified by the LRT. The global model 

accurately recovered the underlying global distributions in all simulations. The 95% HPD for 

the five global parameters, μg, σg, ψ, λδ and ϕδ, always included the true values used to 

simulate the dataset. The global distributions used in the model were fixed, but the results 



from the simulation analyses showed that it can be adapted to a wide range of different 

underlying distributions. In simulation analysis 2, the model recovered a wide normal 

distribution to overcome the fact that the underlying distribution was a uniform distribution. 

In simulation analysis 3, a very wide normal distribution with standard deviation 3.65 was 

obtained when two non-overlapping normal distributions were used as the true distributions 

from which data were sampled. Finally, simulations also demonstrated that the False 

Discovery Rate was very low. 

When we applied the global Bayesian analysis and the LRT to real data, we uncovered some 

interesting disparities that appear to be related to how these methods apply variance 

estimates. In particular, the global Bayesian model estimates a common variance by 

combining data available from all spots. This allows the model to estimate the standard 

deviation more accurately if there is, indeed, a common variance of expression intensities. By 

using the 95% HPD to identify differentially expressed proteins, additional information is 

provided on whether a protein is differentially expressed due to the expression intensities, 

probabilities of expression or possibly both. The proportion of up- or down-regulated proteins 

can be accurately estimated from the model by the global parameter ϕδ. In contrast, the LRT 

uses only the variance of expression intensities identified for each spot. If the number of 

expressed spots is low in both Case and Control groups, the power to detect differences is 

compromised. This is an advantage of the global model when the assumption of a common 

variance is appropriate. However, when this assumption is violated, the global model does 

not identify the same spots as being up- or down-regulated as the LRT. It may be possible to 

apply a mixture of distributions allowing different variances, to overcome this discrepancy. 

However, it is a common to find with MCMC procedures that adding more parameters, and 

integrating over these, affects mixing and convergence to the stationary distribution. 

It is, of course, true that a realistic biological system involves several different groups of 

proteins, with each group associated with different biological pathways that are frequently 

interconnected. In order to capture this complex relationship, it is likely that the expressions 

of different clusters of proteins will be best explained by different underlying distributions. 

This will allow the model to separate proteins into several different categories, with each 

category being represented by a unique global distribution. Whereas the use of multiple 

global distributions may result in a more accurate estimate of these true global parameters, 

there is also the danger that introducing new distributions (and new parameters) will lead to 

overfitting and inflated variance estimates. Several global statistical models developed for 

other high throughput technologies such as microarrays, often attempt to incorporate 

biological pathways [22]. The challenge with 2D PAGE is that the true identity of each 

protein is usually unknown until differentially expressed proteins are determined and then 

subjected to mass spectroscopy for identification. Without this information, it is very 

challenging to develop a global model based on biological pathways. 

Finally, one other assumption that our global Bayesian model makes is that the variances of 

expression intensities for the Case and Control groups are equal. We are aware that this may 

be an unrealistic assumption; however, if we assume the alternative (i.e., unequal variances 

for Case and Control), our implementation of the MCMC has difficulty converging when the 

probability of expression is low. 

Any MCMC Bayesian analysis requires a choice of prior distributions. Although we have 

designed priors that appear to be a reasonable characterization of the uncertainty in our 

parameter values, the model is general enough to allow other priors to be substituted for the 



ones we use. In this paper, we have not tried different prior distributions, because we are 

demonstrating how the Bayesian MCMC scheme may be implemented, and we have applied 

our methods largely to simulated data. With real-world data, it is standard practice when 

applying Bayesian analyses to real data to test for the sensitivity to different prior 

distributions. 

One drawback of the MCMC approach is the amount of time required for the Markov chain 

to converge. Multiple runs of Markov chains can be used to assess the convergence and 

accuracy of the results. An example of this is the Metropolis-coupled Markov chain Monte 

Carlo (MC
3
) approach [23]. A typical 2D PAGE experiments may have between 800 to 1200 

expressed proteins. With the current implementation, it took around 1.7 hours per million 

iterations for an experiment with 800 spots on a Intel i5 2.67 GHz CPU. As the number of 

spots increases, the number of iterations and the time required for the Markov chain to 

converge may also increase. To improve the usability of this model, a more efficient 

implementation, such as parallel MCMC, should be used [24]. The source code and jar file 

are available for download at https://github.com/stevenhwu/BIDE-2D. 
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